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STOCHASTIC ERROR MODELING OF BEAMFORMER OUTPUT
. FOR ARRAYS WITH DIRECTIVE ELEMENTS

1. INTRODUCTION

The fundamental design goal of a passive array is to detect weak signals over a broad band of
frequencies in the presence of noise that is due to structures, water flow, the surrounding ambient
environment, and extraneous targets. The array design is accomplished by matching some spatial
filtering and signal filtering (commonly known as beamforming) to the expected noise and signal
characteristics. The broadband beamforming is achieved through careful application of a time
delay to each element of the array (or phase delay in the frequency domain), which creates a
passive spatial/temporal filter for the expected signal and noise characteristics. The elements in
the final array are expected to behave as modeled mathematically (i.e., the performance of the
array elements will match the mathematical model used for the beamformer).

When arrays are manufactured as integral components of structures (as in conformal/huil
arrays), isolating the array components from inherent manufacturing uncertainties becomes a
problem that can be addressed through array tolerance analysis. This problem has historically
been treated both in textbooks™2 (general arrays) and in technical reports®* (sonar arrays). In this
report, the array tolerance analysis is developed with two new approaches to the previous
research.

The first approach involves the addition of the effects of directional sensors on the curved
surface of the array, which is especially desirable for a conformal application because the sensors
can then reject much of the structural noise through their directive response. However, the added
directivity makes the phased-element addition task of the beamformer very sensitive to certain
erTors.

The second area addressed in this report concerns the handling of failures. Failures are
considered in the traditional sense, as well as for the case of failure compensation through
companion element blanking. Both techniques disregard the response from certain companion
elements (to the failed element) in the array to preserve specific array symmetries in the presence
of failures. Two basic types are considered: diagonal element failure compensation and
beampattern symmetry failure compensation. Diagonal element failure compensation is an
approach to array element failures that effectively zeros-out elements that are geometrically
diagonal (relative to the acoustic center) to the failed element, thus maintaining the array’s
acoustic center. Beampattern symmetry failure compensation effectively zeros-out those elements
that are the same distance from the acoustic center as the failed sensor, thus maintaining the array
symmetry in either the horizontal or vertical beampattern. Other failure compensation techniques
are not treated here because they are beyond the scope of this effort.




For the cases considered, it is assumed that deterministic effects not dependent on statistical
parameters are included in the governing deterministic beamforming expression, where they are
evaluated computationally. The required statistical array tolerance effects are shown in a
progressive stochastic analysis.

Sections 2 and 3 of this report present some mathematical methods for array beamforming
and statistical analysis that are then used throughout the analysis. The error/tolerance analysis
begins in section 4 with the case of array failures, both compensated and uncompensated. Section
5 presents the next stochastic addition, which treats element phase variations, and section 6 uses
element amplitude variations to complete the stochastic analysis. The important equations from
the error analysis are summarized and some computational examples are shown in section 7.
Finally, in section 8, examples of physically relevant errors and their effects due to phase or
amplitude variations are described. ’




2. ARRAY BEAMFORMER

A general beamforming expression in the frequency domain for an array of M elements is
given as

Vo(w) =Y wm dm(C) exp [z (k; — ks) - fm] , 1)

m=1

where Ei = f,w /c and 755 = f;w /c are the wavevectors in the incident and steer (or look)
directions, respectively. In this notation, E represents a unit vector in three-dimensional space
(hence, ||C|| = 1). For completeness, the time-domain beamform output associated with equation
(1) is given by

< - G-0) %

vo(t) = D_ Wm dm(Gi) Um (t— (= C) m>, )
m=1 ¢

where u,(t) is the voltage output waveform of the m*® hydrophone. These two expressions are

related through a standard Fourier transform.

The beamforming expression in equation (1) includes an element directivity term, dm((f;),
which depends on the incident wave direction (_; For an example of this directivity term, it 1s
assumed that the element directionality is given by a cosine function with perfect baffling as in a
notional velocity sensor; hence,

dm(G) = max{G - fim, 0}, (3)

where i, is the unit normal to the mth array element. Because the dot product of two unit vectors
is equal to the cosine of the angle between them, this expression represents a cosine directionality.
Also seen in this equation is the parametric dependence of element directivity on the element
normal (or orientation). Thus, it is shown that any variations in element orientation will directly
affect element amplitude through the directivity expression.

3 (4 blank)




3. STATISTICAL QUANTITIES OF INTEREST

The general beamformer expression is written as a sum of complex variables vy, in the form
M - - -_
V(W) = 3 W dn(G)exp [i (ki = ) - En)
m=1

= ZVm ) . )

where the unmarked dependencies are all implied. In the context of this analysis, the above
expression is a sum of complex random variables vy, that represent the output of a random
process. The quantity of interest when processing this beamformer output is the beamformer
output power spectrum

VPR = (Tom) (Zm)
= ZZV;,Vm, ' 5)

m m!
where (-)* represents a complex conjugate.

The statistics of |V (w)|? are important to the analysis of tolerance errors during array
manufacturing, as well as to the effect of these errors on array performance. In this study, the
statistics derived denote the expected value of the random output variable. Throughout the sequel,
the notation E{z} is used to represent the expected value and Var{z} is used to represent the
variance of a complex random variable z. While the variance is not derived explicitly, the
techniques and simplifications developed are easily applied to derive expressions for variance. It -
is important to note that

E{f(z)} # f(E{z}), (©6)
with the exception being for the linear function f(z), so that, in general,
E{[V (W)} # [E{V(@)}. (7
Thus, a simplistic analysis provides no useful results.

For the statistics on the beamformer output power spectrum, the results of Nuttall* are applied
as shown below. The expected value of the power (magnitude squared) of a sum of complex
variables gives '

E{VW)?} = E{ X wml},
= Y (B{lvml} - |B{zm}P) + [E{ v}l ®)




which will be used throughout the sequel. For notational convenience, the implied dependence on
w 1s omitted, except for cases where it serves to clarify the narrative. Nuttall also shows that the
variance of the power of a sum of complex variables can be written as

Var{[Vw)P?} = E{(IVP-E{VP})’},
= B{VIY - (B(VPY)',
= B wml} - (B(VP),
= Y Bluwjun} - (BQVPY)’, ©)

kémn

where the second term in the last expression is the square of the previously derived mean. The
fourth-order sum in this equation is very complicated and, for that reason, cannot be written out
here for the general case. In evaluating the fourth-order sum, Nuttall* shows that only five
statistical quantities are required:

E{vm}, E{‘Vm|2}3 E{yfn}7 E{|le2um}a and E{|Vm|4}- (10)

Although, in the analysis that follows, only the mean value is determined, the interested reader
can use these techniques to determine values of the above quantities. The values can then be
applied to the expressions found in Nuttall* and evaluated numerically. The expressions that
combine these terms into the fourth-order sum in equation (9) are also given in reference 4.




4. ELEMENT FAILURES

The first stochastic variation under consideration is element failure. For array failure analysis,
a binomial random variable f,, is used to model the failure state of the mt* element. The two
states of this binomial variable are an element failure, f,, = 1, and a working element, fm =0.
The failure variable impacts the m** term in the beamformer sum of equation (1)bya
multiplication factor of 1 — f,,,. The probability density function or probability distribution of the
binomial random variable f,, is given by

p(fm) = Q(fm = 1) + (1 = Q)8(fm) , (11)

‘where §(-) is the Dirac delta and Q is the individual element failure rate (i.e., an element is failed
with probability Q). For the distribution given above, the stochastic moments of the quantity
1 — fn are given by

B{(1- fn)} = [(= fa)p Unddfn=1-Q,  VE>0, a2

which provides all the moments necessary for a stochastic analysis of the element failure for
independent failure events within the beamformer expression.

When element failure compensation techniques are applied, element failures become
statistically dependent events. From the beamformer output perspective, this means that elements
always fail in pairs (i.e., if one element fails, the corresponding zeroed-out element does not
contribute to the beamformer output and has thus “failed”). Because these pairs are related
through some geometric symmetry (either left-right, up-down, or diagonal, depending on the
failure compensation scheme), there is a strong geometrical dependence on the failure, which
must be accounted for in the mathematical model.

To maintain generality, it is assumed that the array elements are numbered such that the
(M + 1 — m)™ element is symmetrically opposing the mt* element, in the manner corresponding
to the element failure compensation scheme employed. Now the beamforming expression (1) is
rewritten as (for convenience, it is assumed that M is even and odd M is a simple extension)

M/2
Volw) = Y [2m + 2a] (13)

m=1

with z,, representing the nominal beamformer contribution of the mt* element as

-

2m = W dn(G3) exp [i (Fi — Fo) - ) (14)

and 7, = M + 1 — m. The failure of independent elements is governed by the failure variable fm




defined above, and accounting for compensation, the failure enters the beamforming expression as

M/2
V'Il(w) = Z_l [(1 - fm)(l - frh)zm] + [(1 - frh)(l - fm)zﬁ'z] 3
22
= 2 (A= fm)(1 = fa) [om + 2n] , (15)

where the subscript 1 on V; (w) is used to represent the case of element failures. This expression
shows that if either the m®® or the h®* element fails (either f,, = 1 or f,; = 1), neither element
contributes to the beamformer output V; (w).

In equation (15), the product of failures is the only stochastic quantity that appears. This
product is denoted as

.

B = (1= fm)(1 = fr), (16)
such that
M/2
Vi(w) = Y Bml(zm + 2m) , (17)
m=1

where the bivariate random variables { ﬁm},ﬂn’[fl are independent of one another. The stochastic
moments of this random variable are given by

Bt} = [ [ Bp (fmlp (fa)dfmdin = (1= QF, V>0, (18)

which is used throughout the study. With these moments defined, the expected value of the
beamformer output power spectrum is evaluated as

M/2

E(ViP} = 3 (E{lxnl} = [E{m}?) + [E{VI}E, (19).

m=1

where
Xm = ,Bm(zm + Z-r‘n)
and a dependence on w is assumed.

The first term in equation (19) is given by

E{]Xmiz}

E{|Bm(2m + z)|?},
= E{BL} |zm + zal?,
= (1-Q)% |2m + za|*; (20)




the second term is given by

IE{Xm}|2 = |E{18m(zm + Zﬁz)}l2 )
= |E{Bn}l* - |(2m + za)[*,

= (1-Q)* |zm + 2nl*; 1)
and the third and ﬁnal term js given by
B{V}} = |E{} Bmlam +2)},
= |2 E{Bn}(zm + za)[*,

= |21~ QP (zm+2zm)l",

= (1-Q* | X (zm+2a),

= (1-Q)* % (22)
Combining these terms back into equation (19) yields

M/2

B{ViP} =10 -Q" - =@ X len+ 2l + (1~ Q)* Vo] (23)
It is noted that an element failure rate ) of zer§ produces
E{Vi*} = V>, as Q-—0, (24)
as expected.

The case of uncompensated failures is formulated in the same way to arrive at

M/2

E{Viuneompl’} = [(1=Q) = (1~ Q)’] b3 (lzml® +1227) + 1= Q72 Vol
- 1-Q-(-0f X wAdE) + 0-Q WP, @9

which differs greatly from equation (23). Thus, the use of statistics without the geometrical
considerations of compensation (such as doubling Q) is unwise and would yield highly
questionable results. The uncompensated failure case is obtained from the compensated failure
case by removing the cross-element terms in the sum of |z, + 2|? and by replacing

(1 - Q)%+ (1 — Q). This result is used throughout the remaining derivations.

9 (10 blank)




5. RANDOM PHASE VARIATIONS

The second stochastic variation under consideration is random phase. Such variations
represent either a byproduct of the elements and their associated electronics or a component of
random positional variations. The former is modeled as a normally distributed (Gaussian) random
phase variable with zero mean and a specified variance. The latter is modeled as a phase variation
of the form (E,— - Es) . Ar,,, where Az, is a Gaussian random positional variation, with random
amplitude and direction. Because of the potential for very complicated probability density
functions for the phase variation, a result for general phase variations is presented. The only
restrictions on these variations are that they are statistically independent and identically
distributed over the elements m.

Beginning with a phase variation ¢y, that enters the beamforming expression for the element
failures shown in equation (15) yields

M/2 . .
Va(w) =D Bm (zme“”"‘ + z,;lewﬁ‘) , (26)

m=1

where the subscript 2 denotes element failures plus phase variations and S, is defined as before.
Letting the variable ,, be defined by

Ym = exp(i¢m) , (27)
the expression is rewritten as
M/2
VZ(w) = Z B (7mzm + 77hzrh) . (28)
m=1 .

The stochastic moments of the variable ,, are given by

B} = [P (6n)dbm, k>0, 29)

where p (¢.,,) is the probability density function of the random phase variable ¢,,. To maintain
generality, the only assumptions for the specific form of the random variable ¢m are that ¢,, and
¢, are independent and identically distributed for all m # n, so that E{y%} = E{v;} forall

k > 0 and all m, n.

As for the case of element failure, the expected value of the beamformer output power
spectrum is evaluated as

M/2

E{VaP} = 3 (E{luml’} - |B{wm}*) + |E{Va}?, (30)

m=1

11




where
Um = Bm(Vm#m + Ym2m)
and a dependence on w is assumed.
To evaluate the terms in equation (30), two properties of ,, are derived. The first is given by
|l = Ym¥r = exp(igm) exp(~igm) = 1, G1)
which is independent of the random variable ¢,,. The second property is

E{vm¥n} = E{¥m}E{7} = E{¥n} (E{m})" = [E{1a}]*, (32)

which follows from 7, and +,, being independent and identically distributed. The two properties,
shown in equations (31) and (32), are used to simplify the expressions in equation (30).

The first term in expression (30) is given by
E{¢ml’} = E{|Bn(vmzm +rmz)l’},
= E{|nl’} - E{|vmlzm|* + 1m?|2m|* + YmVi2m2h + Vo Ymamzm}
= (1-Q)* (Iznl® + |2al” + |E{vm }2 (22 + 2m25)) 5 (33)
the second term is given by
[E{gm}l? = |E{Bn(Ymzm +1mza)
= |B{Bn} - 1B{¥mzm + Ya2m)}
= (1-Q)% [E{mm}(zm +2a) 2,
= (1-Q)" [E{m}* - lzm + zal*; (34)
and the final term is given by
[E{Va}? = |B{D. B (Ymm + Ymzm) } 2,
= |2 E{Bn}E{tmem + vaza}l?,
= [2(1-Q)? (B{tm}em + E{va}za)l’
= |1 -QPE{m} D (zm+2a)I%,

= (1-Q)* |E{ym}* - VoI?, (35)

-
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which makes use of the independence of E{~,,} on m. Combining these expressions back into
equation (30) and then performing some algebra yields

BV} = [1-@7-6(-QF] ¥ ()
HEA-QP -G U= QP T nsit5m) OO
+G*(1-Q)* VP,
where
G = |E{1m}| = |E{e*"}
is written to illustrate the independence on m.

Three notable limits are found in equation (36). First, when there are no phase variations, the
expression becomes

M/2

E{V:} = [A-Q?=(1-Q/] Y lam +zal* + (1 - QF V],

m=1
as G—1, €1))

which, as expected, is the same case found in equation (23). Secondly, when the phase variations
become completely unpredictable (i.e., p(¢n) = 1/(27) for =7 < ¢ < ), the impact is that

G — 0. In that case, the mean of the beamformer output power spectrum, shown in equation (36),
becomes

M
E{Wl} = (1-Q? Y widi(§), a G—=0, (38)
m=1

which is the power output of an unphased (amplitude summation) array with random
compensated failures. Finally, when there are no element failures (¢ — 0) but there are still
phase perturbations, the mean beamformer output power spectrum becomes

M
E{Val} » (1 -G T w2 (&) +G*Vol?, as  Q—0, (39)

m=1

which is the mean for an array with beamformer output spectrum

M
V(W)= 3 Ymzm, (40)
m=1
as shown by Nuttall.*

13




As for the case of element failure, the expected value for the case of random phase variations
with uncompensated element failures follows from equation (36), and is derived by replacing
(@ = 1)? = (Q — 1) and removing the cross-element terms from the element summations to yield

M -
E{‘%,uncomp|2} = [(1 - Q) - GQ (1 - Q)2]m2=1 w?n dgn(gz) (41)

+G*(1-Q)* Vol

Comparing this expression with that in equation (36) shows the effect of element failure
compensation on mean beamformer power output when random phase variations are included.

A combination of different physical effects may cause random phase errors. In that case, the
net phase error ¢, at each element is written as a sum of the phase errors ¢£,{) from the various
physical effects. Thus, J independent physical effects causing a phase error produce

J

om=3 09, | “2)

j=1

which results in

G = [E{m},
= |[E{exp(3_ 103},
I1 1E{exp(i¢3)},
HG(j)’ (43)

where GU) is the value of G corresponding to the 5** source of the phase error. This expression
follows from the statistical independence of the various sources of phase error.

14




6. RANDOM AMPLITUDE VARIATIONS

The final stochastic variation under consideration is random amplitude. The derivation begins
by building upon equation (26) through the addition of a random amplitude variation term Q.
The nominal (no amplitude variation) case has o, — 1, which is appropriate because no
assumptions have yet been made on the specific statistical nature of the random variables in this
study (i.e., they need not have zero mean). With the amplitude variations ,, the beamformer
output spectrum becomes

M/2
V3(W) = Z Bm (am'szm + aﬁz'Yerh) 3 (44)

m=1

where the subscript 3 denotes element failures plus phase and amplitude variations, and B, Ym
are defined as before. In the analysis that follows, the only assumption made for the random
variable a,, is that it is statistically independent of m. Later examined is the special case where
a,, has unit mean, which represents the physically important example of unbiased amplitude
variations.

As in the previous cases, the expected value of the beamformer output power spectrum is
evaluated as

M/2

E{([Vs'} = ¥ (E{nl} = [BQOW}?) + | E{Va}P, 45)

m=1

where
/\m = ,Bm(am7mzm + aTh’YﬁLZﬁZ)
and a dependence on w is assumed.

The first term in expression (45) is given by
E{I’\m|2} = E{lﬁm(am')'mzm + ar‘n')"rhzﬁz)lz}a

= E{B.}- {2 |¥nl*lzm|* + olyml* |2l
+ QO (Y Vi Zm 2 + VonVinZmZin) } 5

= (1-Q" (Bfon} - (lzml + l2al)
+ E{omam} - [B{ym}? - (22 + 2m23)) »

= (1-Q)% E{a} (|zml* + |2zal")
+ (1-Q) (B{am})?  |E{vm}* - (22 + 2m23) ; (46)

15




the second term is given by
IEQRY = |E{Brn(am¥mem + om¥mzm)
= |E{Bn}E{am}E{vm}(2m + 2z2)
= |E{Bn}I* - |E{an}* - |E{m}[* - |2m + 2zal*,
= (1-Q* (B{am})? - |B{wm}l® - l2m + 2al*; 47)

and the final term is given by
|E{Vs}P? = |E{Y Bulommzm + anymzm)},
= |Y_E{Bn} (E{om¥m}zm + E{omrm}zn),
= |1 - QE{em}E{¥m} 3 (2m + za)*,
= (1-Q) (B{am})* - [E{ym}[* - Vo[- (48)
For notational convenience, the variable A, is defined as the k" statistical moment of o, so that
Ap = E{of) = / ok plam)dom, k>0, (49)

which is independent of m. Use of this simplification along with the previously defined G allows
combination of the above terms into equation (45) and (after algebraic simplification) arrival at

BV} = [4:(1-Q7 - 416*(1-Q)*] £ v di(@)
- M/2
+ (AP (1- QP =BG (1= QP] % amp+ 2zn) O

+ATG? (1-Q)* Wol*.

When there are no amplitude variations, a.,, = 1, so that A; = A, = 1. In this case, the mean
beamformer output power spectrum of equation (50) reduces to that shown in equation (36), as
expected. Equation (50) represents the mean beamformer output power spectrum for
compensated element failures, element phase errors, and element amplitude errors combined. It
shows the important interrelations between the three different types of errors, thus justifying a
thorough analysis of the combined effects.

A physically important class of amplitude variations is the unbiased amplitude variation,

where A; = E{an,} = 1, but nothing can be said about A, = E{a?2,}. In this case, equation (50)
reduces to

M
E(ViP} = [4(1-QP -G (1-Q*] ¥ wndn(C)

16




M/2
+ [P - QP =G (1= Q)] 3 (emh + 2mza)
m=1
+G*(1-Q)* Vol (51)

which shows the separation of amplitude and phase errors (G and A never occur in the same
term).

As for the previous cases, the results are compared with those found for uncompensated
failures. As before, uncompensated failures are represented by replacing (1 — Q)+~ (1-Q)and
removing the cross-element terms from the element summations, which yields

E{Vaumarmsl®} = [4:(1-Q) - 462 (1= QF] T w2 (0)

(52)
+ A1 G (1- Q) Vol
for the general case with uncompensated failures and
M -
E{‘Vii,uncomplz} = [A2 (1 - Q) - G? (1 - Q)2 ] mz-21 w72n d?n(g‘l) (53)

+ G2 (1 - Q)7 [Vol*

for the case of unbiased amplitude errors with uncompensated failures.
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7. SUMMARY OF VARIATIONS

The combined effects of element failures, element failure compensation, random phase
variations, and random amplitude variations have been shown in the preceding sections. In all of
the derived expressions, the use of an omnidirectional sensor directivity response and no error
compensation reduces the results to those previously reported.>* The detailed derivations have
been presented to illustrate the level of approximation and assumptions involved in the
development of the mean beampatterns. In this section, the principal results of the derivations are
gathered for easy reference, and some additional comments are made with regard to their use in
practice.

The two primary equations used for array error analysis are equation (52) for uncompensated
failures and equation (50) for compensated failures, both of which are repeated here for
convenience. For the general case of uncompensated failures, the mean beamformer output power
spectrum is given by

BV} = [A2(1-Q) = 4367 (1= Q] 2 wh (@)

+A1GH(1- Q) Vol

(54)

and for the general case of compensated failures, the mean beamformer output power spectrum is
given by

BVamsl?} = [A2(1 - QP = 4267 (1= Q)] & ()

1
4 [A2G(1- Q)P - A2G2(1- Q)] %_1 7 (55)
+ A2G? (1 - Q)* [Wl?,

where the compensation is any form of element blanking that is symmetric to failed elements.
The second summation in expression (55) has been simplified from the previous form (see
equation (50)) using the simplified relationship

M/2 M

* *
D tmin = ), Fmm
m=1 m=M/2+1

which follows from the definition of zs. The parameters @ and G in equations (54) and (55)
represent the failure rate and the amplitude of the mean error due to phase perturbations,
respectively. The parameters A, and A, represent the first and second moments of amplitude
errors, respectively.

In these expressions, the nominal (no error) values of the parameters are Q = 0, G =1,
A, = 1,and A, = 1. Multiple independent phase errors with independent G’s given by G are
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combined to have G = [] GY). Similarly, multiple independent amplitude errors with
independent A;’s and A,’s are combined to have 4; = [] A(lj ) and Ay =TI Agj ). Nondirective
sensor elements are handled by modeling the sensor directivity as omnidirectional; hence,
dm(@) = 1 in the above expressions provides equivalent results for omnidirectional sensors.

The first term in equations (54) and (55) shows that there is a sidelobe floor (minimal sidelobe
level) due to errors that exists regardless of the level of sidelobe control for the nominal array.
Because of the dependence on the incident signal through element directivity d,,((;), it is difficult
to quantify this effect for the general case. However, through the use of directive array gain,
which is given by

AG = 10log;, [(Z wmdm(g—;))z} — 101ogy, [Z wfndfn(@)] ,

an approximate sidelobe floor can be derived. In this expression, the first term is based on the
element response in the steering direction g:;, and the second term is based on the incident
direction (;. Hence, the directive array gain expression AG is dependent on both the incident and
steered directions.

For the case of uncompensated failures, the approximate sidelobe floor is given (in decibels)
by

As

min{SLyncomp} =~ 10log, [
As expected, improved array gain lowers the level of this sidelobe floor, even in the presence of
errors in the array. For the case of compensated failures, the level of approximation applied to this

sidelobe analysis is similar to removing the cross term in equation (55), in which case the
approximate sidelobe floor is given by

Ay

——A%Gq(l — oy - 1] - AG, (57)

min{SLecomp} = 1010g10[

which is the same as for uncompensated failures with the working element rate (1 — @) replaced
with (1 — @)2. Note that this method does not have the same effect as doubling the failure rate; in
general, it produces a very small difference with a slightly better (lower) sidelobe level for the
compensated failures as compared with the doubled failure rate. This behavior is the result of
symmetry that is maintained because of the particular form of failure compensation employed.
An example of the utility of these sidelobe floor approximations is given in the next section.
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8. SAMPLE ERRORS

To accurately model the effects of various errors on the array, the impact of different
combinations of G2, A4;, A, and Q needs to be examined with regard to a particular array. These
are the fundamental beamformer error parameters for beamforming an array of directional
sensors. They provide the basic mathematical mechanism by which statistical errors enter the
expressions for the statistical beampattern. In this set of parameters, G? replaces G since that is
the only form in which G enters the mean beampattern expressions.

In the remaining sections, the derivation of these parameters is presented for common types of
errors. The physical mechanisms that affect the parameters are translated into effective values for
- beamformer errors. To assess the effect of the parameter values on specific beampatterns, the
following numerical example is considered: a 20-by-20 square planar array of elements spaced at
Nyquist sampling (\/2 spacing between elements), where each element has a cosine directivity
pattern in the direction normal to the array surface. The array is shaded in both directions with
Taylor shading® to a sidelobe level of 25 dB with i = 4. The beampattern for this array under
perfect conditions (no errors and no failures) and steered to the array maximum response axis is
given in figure 1 (only a slice of the beampattern through one direction is shown due to
symmetry). Figure 2 shows the effect of 10% and 20% failures on the beampattern (Q =0.10 and
Q = 0.20, respectively), both without compensation and with diagonal blanking compensation. In
figure 3, the effects of phase errors on array response are shown for values of G* = 0.80, 0.90,
and 0.95, and in figure 4, the effects of unbiased amplitude errors (4; = 1.00) are shown for
values of 4, = 1.05, 1.10, 1.15, and 1.20. Figure 5 illustrates the combined effects of a set of
phase and amplitude errors with both uncompensated and compensated failures. In this case, the
simulation was performed with G2 = 0.90, 4; = 1.00, A, = 1.10, and @ = 0.10. For combined
errors, the nulls of the sidelobes are much less significant than for any of the component errors.
Thus, the combination of errors both increases the peak sidelobe level (through addition) and
smooths out the oscillations in the sidelobe response. This smoothing effect is more significant
with large errors than with small errors.

The utility of expressions (56) and (57) for approximating the sidelobe floor can be shown by
considering the combined error case in figure 5. For uncompensated failures, the sidelobe floor
expression in equation (56) was used to obtain the approximate floor shown in figure 6, which
allows an assessment of the improved shading in the array. When a new shading scheme is
considered to lower sidelobes, two effects must be addressed. The first is that the floor will
decrease according to the increase in directive array gain (AG). However, if this decrease does
not bring the sidelobe floor below the level of desired sidelobe control, the shading becomes error
dominated, which is an undesirable condition that should be avoided. If conservative error
estimates are known at the beamformer design stage, the shading may be adjusted to manage this
sidelobe control versus sidelobe floor tradeoff, so that the result will minimize oscillations in the
sidelobes of the beampattern.
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8.1 NOMINAL PHASE ERRORS

As an example of phase variation, consider the simple case where &m is a zero-mean Gaussian
variable with standard deviation o, (variance ag) so that

(Om) = L ("*bfn) (58)
p Ym —O'p\/i—?? p 20_12) .

One use of such a model may be to represent expected variations in element response due to
electronics. In this case, the term G in equation (36) is found by evaluating

E{vm} = /'Vmp (Om)ddm ,

1 . -2,
apm/exp(wﬁm) exp ( 202 ) dém ,

1 (6m —i02)?  OF
= exp | ——m—F— — = | don,
opV2m P ( 202 2 om

2
= exp (-%) . (59)

The term G in equation (36) is thus given by

—Ug
G = |E{n}| = exp 3 | (60)

8.2 ELEMENT POSITION ERRORS

Element position errors are an important type of phase error. In this case, the individual
element phase is given by

1™ = (k; — ks) * Tm (61)

when there is no position error. It is assumed that the beamformer contains no knowledge of a
positional error and therefore applies phase delays according to the assumed (nominal) position.
Thus, the element positional errors only affect the k; - Z,, component of phase. In this situation,
the phase is modified to

-

Frt =k (B + AT) — Ky Zp = (i — k) Em + k- AT, (62)
with an error in position AZ.

The perturbation in this case consists of a deterministic vector k; (with unspecified direction
and known magnitude) dotted with a random positional error vector (with arbitrary direction and
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random magnitude). The error in position can therefore be stipulated to be a stochastic magnitude
with an arbitrary direction, resulting in two independent random variables: a magnitude

M = |AZ| and an angle 4 that is the angle between the incident wavevector k; and the
displacement vector AZ. Thus, the dot product of the error term in the above expression can be
rewritten as

G = QT — O = ki AT = (w/e) M cos(6) . (63)

Because the error in displacement vector can be located in any direction (in three-dimensional
space) with equal probability and the direction of the beamformer steering component is fixed in a
statistical sense (i.e., it is deterministic), the combination M cos(f) is a statistical variable that
covers all angles in 0 < 6 < 7 equally for each non-negative value of M. The physical meaning
of M and @ is replaced with statistically identical variables such that M is normally (Gaussian)
distributed about zero and 6 is uniformly distributed as an angle over the upper hemisphere of a
unit sphere (it is arbitrarily made to be the angle relative to the north pole). These variables still
apply in the same way to ¢, but the use of a normally distributed M (allowing values less than
zero) facilitates the solution. An alternative approach with an identical solution is to assume M to
be Rayleigh distributed, with § uniformly distributed as an angle over the entire surface of a unit
sphere.

Because the angle 6 is a random variable with uniform distribution over the upper hemisphere
of a unit sphere (relative to the north pole), it has a cumulative distribution function
c(fo) = Prob(f < 6) given by (with 8 € {0,7/2})

1 27 prbo .
(0o) = 5 /O /0 cos(d) df dé = sin(6y), 6o < /2. (64)
The probability density function of the random variable 4 is given by
d
p(f) = 350(9) = cos(f), 0<6<7/2. (65)

The random variable M is assumed to be normally (Gaussian) distributed with zero mean and a
standard deviation given by o;,. Thus,

1 - M?
p(M) = \/%UM €Xp (_2'531\;) (66)

is the probability density function of the random variable M. Note that this variable has an equal
probability of being positive or negative, so that the resulting statistics of the combination of

M - cos(f) covers a statistically uniform sphere with random magnitude. The distribution of the
random magnitude is given by the right-half (greater than zero) side of the normal distribution in
equation (66).
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The function G needed for the mean beamformer output power spectrum under phase errors is
evaluated by forming

E[’Ym] = E[ei(mr]a
= / / 45 p(6)p(M)ddM

/2 ; 2
= \/2_ / / exp (2Mw 205(9) _ 2‘]\;‘[2 ) cos(6)dfdM . (67)
TOp J—~00J0 M

A change of variables from M to nondimensional M = (w/c)M and from 6 to nondimensional
n = cos(#) is used to reduce the double integral to

—c o 0 . M2c2
m = ———— - 'M
Elal WV 2mo N /-oo/1 P (Z e ) Vi—17?

dndM ,

M?3c?

C 1 77 /OO Lo~ ~
Mn—- ——=| dMdn,
wV2roN /o VI—1? Je exp (Z 7 2w2a§4> 7

1 2,2 2

Ui —WoMT
= exp | =2 IM1 ) g
0o V1—1n? p( 2¢2 ) 7

—iV/2me —w?0?, WO .
= e erf , 68
2wo . < 2¢2 V2c (68)
where the function erf(z) is the error function with argument . The above expression uses no

analytical assumptions and is exact. In practice, the standard deviation o of the magnitude of
the error is assumed to be small compared with a wavelength. Thus,

0M<<c/f)

which implies

opw/(V2¢) < €

for some small . The assumption of small o, (compared with a wavelength) is a realistic one,
because position error magnitudes on the order of a wavelength would render a phase-based
acoustic array useless. Since the argument of the error function is now of small magnitude, the
small argument error function expansion (derived from equation 7.1.5 in Abramowitz and
Stegun®)

x2n+1

erf(ic) \/_Zn' 2n +1)

(69)
is used to arrive at (after some algebra)
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(70)

where

2¢2

1s a nondimensional scaling of the standard deviation of position error magnitude. In practice, the
summation in this expression may be truncated after a few terms (two or three terms is usually
enough) for small position errors.

It is useful to compare the phase error due to positional errors with the highly conservative
approximation to phase error that is often employed. Restating the error in position as three

independent errors in orthogonal directions (say z, y, and z for convenience) creates a phase error
of

P = PPt — ¢ = KEAL® + kY Az + kP AT, (71)

where superscripts are used to represent the coordinate directions. The random positional error is
now modeled with each component (Az*, Az¥, Az*) as an independent, zero-mean normally
(Gaussian) distributed random variable with standard deviation o,. The approach followed is to
bound each component of k; by its magnitude k; = w/c, which creates a conservative bound on
the phase error of

|ém | < 3ko|DJ, (72)

where D is a random variable that is distributed identically to the components of AZ. Using the
nominal phase error result of the previous section, G is now given by

2.2
_gw UM
2¢2

G = exp( ) = exp(-959), (73)

where S is defined as before. This approach is identical to computing a bound on an independent
G for each coordinate direction and then multiplying these bounds together. A comparison of this
very conservative bound and the exact term (as computed in equation (70)) is shown in figure 7.

A second (and more accurate) conservative approach is developed by creating the phase error
in the form

qugr = k;_r:sz + k?Axy -+ kizsz = ko |Dl (];z . Aii') , (74)

where IEZ- and AZ are the unit vectors in the same direction as fc} and AZ, respectively. The
dot-product occurring in the preceding expression is now conservatively bounded in the interval
[—1, 1], such that the phase error is conservatively estimated by
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6’| < Ko | DI, (75)
which is obviously less conservative than the previous bound. This estimate ]eads to

—W JM

—252—> = exp(—S), . (76)

G=exp(

with the same parameter S. A comparison of this less conservative bound and the exact term (as
computed in equation (70)) is shown in figure 8.

From figures 7 and 8, it is clear that the addition of separate bounds on the different
directional components of error causes a very large deviation from the full statistical error. This
result is due to the misrepresentation of k; as three independent vectors of equal magnitude. A
better conservative bound is the error bound in equation (75), which is based upon a bound on the
dot-product of the incident wavevector and the element perturbation vector. Although it is not
recommended to use this bound (since a more exact solution in the form of equation (70) is
already available), it provides some practical guidance for using nonuniform element
perturbations. If the perturbations in different coordinate directions vary in magnitude (such as
when the z-position is more tightly controlled than y and z), then a reasonable first estimate of G
can be obtained by taking
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67| < ko-maxD, (77)

where max D is a random variable representing the deviation in the dimension with the maximum
perturbation (highest standard deviation). This approach provides better estimates than the one
that independently adds conservative estimates for error due to each direction (with separate, but
identical, k¢ on each term).

The preceding method uses the equivalent phase error approach outlined earlier. A more
accurate solution can be obtained by applying the perturbation to each incident angle and
independently computing the resulting beamformer output at that angle; however, that level of
detailed modeling eliminates any insight that.can be gained from the first-order effects models.

8.3 ELEMENT ORIENTATION ERRORS

Element orientation errors are a type of error that produces closed-form approximate
statistical results in specialized cases. For the analysis here, attention is restricted to
cosine-directive elements with perfect baffling. In this case, the orientation affects the
beampattern through the element directivity term dp, ((;) = max{(; - i, 0}, where ¢; is the unit
vector in the incident wave direction and 7,, is the unit vector normal to the element. The effect of

30




the element orientation error is a resulting random perturbation in the normal vector that creates a
magnitude change in the element directivity. The random perturbation can be represented as

dn(G) = max{C:- - (fim + ART), 0} = max{( o + G - Af), 0}, (78)

where A7l is the perturbation to the orientation vector. Since the incident direction Cl is fixed (in a
statistical sense), the perturbation term (; - AT represents a random magnitude multiplied by the
cosine of a random angle. In the form given, the perturbation is limited to the constraint

i + Af| = 1, which makes the connection between the dot-products and the angle cosine
meaningful.

The constraint |7, + Afi| = 1 has the following geometrical interpretation: the vector 7in, is
given as a unit vector (by definition), such that any sum of this vector and another vector that is
added to the unit vector must lie on the unit sphere whose origin is the same as the origin of 7i,.
Some geometrical analyses show that this is only possible when the added vector Af has a
magnitude given by

|Afi| = 2sin (¢2m> : (79)

where ¢y, is the angle between 7i,, and 7, + A7i. The variable ¢, now has a physical
interpretation as the angular error in orientation for the mt" element of the array. To this point, the
interpretation of |A7| and ¢y, is independent of the specific element directivity of the array being
analyzed.

Since the perturbation C—; - AT has a magnitude given by |A7i|, the only remaining component
to analyze is the random phase. The phase of Q_'; - A7 is analyzed by first recognizing that for
small perturbations AT lies nearly on the plane normal to the vector 7i, (as a result of the sum
fim + A7 lying on the same unit sphere as 7i,, and [A7l| being small). Defining the angle ¥, as
the angle between i, and C-; yields

COS Y = Tim * G; - (80)
The angle ¢ is defined as the angle between A7 and (: such that

A7 -G

A7 (81)

cos =

A final angle @ is defined as the rotation of the perturbation vector A7 in the plane normal to the
vector fi,y,, so that @ is the random variable for the direction of the orientation error for the
element. Since 6 is a random variable with uniform distribution, the point 6 = 0 is arbitrary and
can be set to be the location where the projection of Cz intersects the plane normal to 7i,,,. Some
simple geometry shows that the following relationship holds:
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€cos ¢ = sin ¥, cosf. (82)
Combining equation (79) with equations (81) and (82) yields
G- AR = 2sin (%’”) sin ¥y, cos 6 (83)

as an expression for the perturbation under small orientation errors. Two further approximations
simplify this formula. First, the assumption of small orientation errors implies that |¢,,,| < €
where 0 < £ < 1, so that 2sin(¢,,/2) & @y,. Secondly, directive elements whose normal is far
from the incident wave direction contribute little to the beampattern, which implies that [, < €
for terms that contribute significantly to the beamformer output. Under this assumption,

Sin Y, & ¥m €0s Y, which holds for the elements that are the primary contributors to the
beampattern. The elements that are the most significant contributors in the unperturbed situation
remain the most significant under small perturbation. With these simplifications, equation (83)
reduces to

g:; ATl X QW COS P cOS B,
~  (dmWm 08 0)(C; - Tim) - (84)

By restricting the analysis to cosine directive elements with perfect baffling, equation (78)
becomes

dn(G) = max{om (- An), 0},
X O - max{G - fim, 0}, (85)

where the approximation holds for significant contributors to the beampattern (elements with
nontrivial directivity) and

O, = 1+ Oy, cOs b (86)

is used to represent the element magnitude perturbation due to orientation errors for cosine
directive elements.

To use the statistical analysis developed in earlier sections, the random variables o,
(comprised of ¢y, 8, and v,,) must be independent and identically distributed. The variable ¢,,
represents orientation error magnitude (in radians), or tilt, and the variable @ is the direction of
this tilt, so that these variables are assumed to be identically distributed. However, the variable
¥m represents the angle between the incident vector and the vector normal to the unperturbed
element, which is not random and necessarily varies among the elements. Since this variable must
be identical for all elements, an approximation must be used. Two approximations have been
tested: one sets ¥y, to be the average of all ,,,’s for each incident angle and the other sets ¥y, to
the maximum v, for each incident angle. Because the former is easier to implement and the
difference in the two was seen to be minor,

32




M
Y & (-}%) ;arccos(@ ), .Vm, (87)

is a reasonable approximation for arrays with small curvature. Under this restriction, the problem
is appropriate for the analysis developed in earlier sections.

The physical interpretation of the two random variables implies that 6 is uniformly distributed
over {—m, 7} and ¢, follows a distribution similar in shape to the right side (positive component
only) of a normal (Gaussian) distribution with zero mean. To facilitate the analytical
simplifications, the random variable 6 is restricted to {0, 7} and ¢, is allowed to follow a true
Gaussian distribution (permitting both positive and negative values) with zero mean and a stated
standard deviation of o,. In this way, the variable ¢,, is allowed to have values ranging from
{—00, 00} even though the values outside of {—, 7} are nonphysical. But for small
perturbations, these values are on the extreme tails of the distribution and therefore are negligible.
Thus, o, is the standard deviation of element orientation (tilt) with respect to normal, given in

radians, and 1 .
P(¢m) = o exp ( 20%”) _ 38
The necessary statistics on o, are given by
A = Elom],
- /_:o /ow(l + G €08 8) P(drm) (6) dB dm
2

1 +o00 pm —¢m ,
= T /_oo /0 (1 + dmtm cos f) exp ( 202 ) dfdon, ,
_ 1 +00 ._¢72n
= vl e""( 203) Wom:
=1, (89)

which shows the perturbations to be unbiased (i.e., equation (51) holds), and
4 = Eled],
+oo )
- /_w /0 (14 ¢mibm cos0)* p(dm) p(6) A6 dérm ,

1 +00 pm _¢2
= 1 mW¥m 2 o m
wao\/ﬁ/—oo /0 (1 + ¢mipm cosb) exP(.‘Za?,) df d¢

! oo 2 12 — A
2 ;2

= 1+-—’”§‘Zﬂ, (90)

for which equation (87) is used to obtain the value of v, for each incident angle.
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8.4 ELEMENT RESPONSE TOLERANCES

Element response tolerances are a simple form of error that can be modeled by placing
statistical variations on the magnitude of individual sensors. If these variations are assumed to be
normally distributed about the mean, a simple normal (Gaussian) distribution is

1 —(0m — 1)?
plam) = ovon exp (T) ) €29)

where o, is the magnitude of the m*™ sensor. In this statistical model, it is assumed that the
nominal (mean) sensor response is a,, = 1, and the standard deviation from this mean is given by
0. If element response tolerances are given as a standard deviation in received power (in
decibels), then a transformation between o, and 3, (the tolerance in decibels) shows

Oy, = 100Bm/20) (92)

where Sy, is now a random variable with a mean of zero and a standard deviation of o, which is
the stated standard deviation in power level. For this case, the errors may have a bias in
magnitude; thus, the parameter A; must be computed as

A= Elant = [106p(5)dp,

_ 1 / 106/20) oy (=57 dpB (93)
T opvar P\203)

which is best evaluated numerically. In a similar manner, the parameter A, is given by

1 2
Ay =E{a?} = 10(8/10) (——) dg, 94
2 = E{a,} p—"c / exp 27 fé (94)

which is also best evaluated numerically.

The use of a normally distributed magnitude variation as in equation (91) can be easily
examined analytically. In this case, the required statistical moments 4; and A,, as found in
equation (50), are given by

A = E{am} =1 (95)
and
A2 = E{afn},
= E{(am - ,ua)2} + /"'(21 )
= o2+1, (96)

34




where o = E{an,} = A; = 1is the mean value and the third step follows from the definition of
variance. These expressions can then be used in equation (50) to obtain the effects of element
response tolerances on mean beamformer spectral power output.
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9. SUMMARY

The error analysis of a two-dimensional passive array (conformal or planar) with directive

element responses has been developed. The analysis was based on a set of fundamental
beamformer error parameters that address effective element-level phase errors, amplitude errors,
and statistical failures (reliability). The combination of these various parameters and their effect

on

mean beampattern power output was given. Also presented were numerical examples of the

errors, as well as the analytical derivation of various physical error mechanisms in terms of
amplitude and phase error. Because the mathematical derivations described here pertain to a wide
variety of passive arrays (and include the effects of array curvature and element directivity with
the errors), these expressions will have broad application for assessing the impact of
element-level errors on array beamformer performance.

o

REFERENCES

. B. D. Steinberg, Principles of Aperture and Array System Design, John Wiley & Sons, Inc.,
New York, 1976, chapter 13.

R. J. Mailloux, Phased Array Antenna Handbook, Artech House, Inc., Norwood, MA, 1994,
chapter 7.

A. H. Quazi and A. H. Nuttall, “Effects of Random Shading, Phasing Errors, and Element
Failures on the Beam Patterns of Line and Planar Arrays,” NUSC Technical Document 6103,
Naval Underwater Systems Center, New London, CT, 17 September 1979.

A. H. Nuttall, “Effects of Random Shadings, Phasings Errors, and Element Failures on the
Beam Patterns of Linear and Planar Arrays,” NUSC Technical Report 6191, Naval
Underwater Systems Center, New London, CT, 14 March 1980.

T. T. Taylor, “Design of Line-Source Antennas for Narrow Beamwidth and Low Side Lobes,”
IRE Transactions on Antennas and Propagation, vol. AP-3, 1955, pp. 16-28.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, Dover
Publications, Inc., New York, 1965.

37 (38 blank)




INITIAL DISTRIBUTION LIST

Addressee )

Electric Boat Corporation, Groton, CT (T. Baker, M. Sullivan)
Naval Sea Systems Command (PMS 450; SEA 93—-ASTO, P. Scala)
Center for Naval Analyses

Defense Technical Information Center

Bolt Beranek & Newman, Inc. (F. Berkman, R. Brown)

OASIS, Inc. (H. Schloemer, R. Christman)

No. of Copies




